Lingkaran dalam segitiga jelas akan menyentuh ketiga sisi segitiga. Persentuhannya akan membentuk sudut siku-siku terhadap pusat lingkaran. Jadi, ketiga sisi lingkaran hanya menyinggung lingkaran.
Berdasarkan sifat lingkaran, jarak antara ketiga sisi dengan pusat lingkaran adalah sama. Jadi, radius lingkaran dalam saka dengan jarak pusat lingkaran dengan garis singgung. Lalu, dimana letak pusat lingkaran?. Kita bisa mencoba ketiga titik istimewa segitiga.
Pencarian Titik Pusat Lingkaran
Titik Tinggi
Tidak mungkin karena saat salah satu sudut segitiga berupa sudut tumpul maka titik tinggi akan berada diluar segitiga.
Titik Berat
Kita bisa membuat 3 garis yang menghubungkan titik berat dengan sisi segitiga dan membentuk sudut siku-siku. Agar titik berat menjadi pusat lingkaran, ketiga garis tersebut harus sama panjang (r 1 = r 2 = r 3 \displaystyle{ r _{ 1 } = r _{ 2 } = r _{ 3 } } r 1 = r 2 = r 3 ). Segitiga ADO dan AFO berbagi satu sisi yaitu AO, mempunyai satu sudut siku-siku, tetapi tidak ada kemiripan lain dalam hal besar sudut atau panjang sisi sehingga D O atau r 3 = F O atau r 2 \displaystyle{ D O \text{ atau } r _{ 3 } = F O \text{ atau } r _{ 2 } } D O atau r 3 = FO atau r 2 tidak terbukti. Begitu juga dengan segitiga BDO dan CEO, sehingga r 1 ≠ r 3 \displaystyle{ r _{ 1 } \ne r _{ 3 } } r 1 = r 3 . Begitu juga dengan segitiga CEO dan CFO sehingga r 1 ≠ r 2 \displaystyle{ r _{ 1 } \ne r _{ 2 } } r 1 = r 2 . Jadi r 1 = r 2 = r 3 \displaystyle{ r _{ 1 } = r _{ 2 } = r _{ 3 } } r 1 = r 2 = r 3 tidak berlaku yang berarti titik berat bukanlah pusat lingkaran dalam.
Titik Bagi
Sama seperti sebelumnya kita harus buktikan r 1 = r 2 = r 3 \displaystyle{ r _{ 1 } = r _{ 2 } = r _{ 3 } } r 1 = r 2 = r 3 .
Segitiga ADO dan AFO berbagi satu satu garis yaitu AO, mempunyai satu sudut siku-siku dan mempunyai sudut yang sama besar. Karena dua sudutnya sama besar maka sudut ketiga jelas sama. Karena satu sisi pada kedua segitiga sama panjang, maka dua sisi lain pada dua segitiga juga sama panjang. Jadi D O atau r 1 = F O atau r 3 \displaystyle{ D O \text{ atau } r _{ 1 } = F O \text{ atau } r _{ 3 } } D O atau r 1 = FO atau r 3 terbukti.
Begitu juga dengan segitiga BDO dan BOE, sehingga r 1 = r 2 \displaystyle{ r _{ 1 } = r _{ 2 } } r 1 = r 2 . Begitu juga dengan segitiga CEO dan CFO sehingga r 2 = r 3 \displaystyle{ r _{ 2 } = r _{ 3 } } r 2 = r 3 . Jadi r 1 = r 2 = r 3 \displaystyle{ r _{ 1 } = r _{ 2 } = r _{ 3 } } r 1 = r 2 = r 3 berlaku yang berarti titik bagi merupakan pusat lingkaran.
Diperoleh juga karakteristik berikut
A D = A F B D = B E C E = C F \displaystyle{ \begin{aligned}A D & = A F \\ B D & = B E \\ C E & = C F\end{aligned} } A D B D CE = A F = BE = CF
A B + B C + C E = K A D + D B + B E + C E + C F + A F = K 2 ⋅ A D + 2 ⋅ B D + 2 ⋅ C E = K 2 ( A D + B D + C E ) = K A D + B D + C E = K 2 \displaystyle{ \begin{aligned}A B + B C + C E & = K \\ A D + D B + B E + C E + C F + A F & = K \\ 2 \cdot A D + 2 \cdot B D + 2 \cdot C E & = K \\ 2 \left( A D + B D + C E \right) & = K \\ A D + B D + C E & = \frac{ K }{ 2 }\end{aligned} } A B + BC + CE A D + D B + BE + CE + CF + A F 2 ⋅ A D + 2 ⋅ B D + 2 ⋅ CE 2 ( A D + B D + CE ) A D + B D + CE = K = K = K = K = 2 K
A D + B D + C E = a + b + c 2 \displaystyle{ A D + B D + C E = \frac{ a + b + c }{ 2 } } A D + B D + CE = 2 a + b + c
Panjang Jari-Jari
Mencari Panjang Jari-Jari dengan Luas Lingkaran
Luas segitiga ABO
L A B O = 1 2 ⋅ A B ⋅ r 1 = 1 2 ⋅ A B ⋅ r \displaystyle{ \begin{aligned}L _{ A B O } & = \frac{ 1 }{ 2 } \cdot A B \cdot r _{ 1 } \\ & = \frac{ 1 }{ 2 } \cdot A B \cdot r\end{aligned} } L A BO = 2 1 ⋅ A B ⋅ r 1 = 2 1 ⋅ A B ⋅ r
Luas segitiga BCO
L B C O = 1 2 ⋅ B C ⋅ r 2 = 1 2 ⋅ B C ⋅ r \displaystyle{ \begin{aligned}L _{ B C O } & = \frac{ 1 }{ 2 } \cdot B C \cdot r _{ 2 } \\ & = \frac{ 1 }{ 2 } \cdot B C \cdot r\end{aligned} } L BCO = 2 1 ⋅ BC ⋅ r 2 = 2 1 ⋅ BC ⋅ r
Luas segitiga ACO
L A C O = 1 2 ⋅ A C ⋅ r 3 = 1 2 ⋅ A C ⋅ r \displaystyle{ \begin{aligned}L _{ A C O } & = \frac{ 1 }{ 2 } \cdot A C \cdot r _{ 3 } \\ & = \frac{ 1 }{ 2 } \cdot A C \cdot r\end{aligned} } L A CO = 2 1 ⋅ A C ⋅ r 3 = 2 1 ⋅ A C ⋅ r
Luas segitiga ABC adalah penjumlahan luas segitiga ABO, BCO dan ACO.
L A B C = L A B O + L B C O + L A C O = 1 2 ⋅ A B ⋅ r + 1 2 ⋅ B C ⋅ r + 1 2 ⋅ A C ⋅ r = 1 2 ⋅ r ( A B + B C + A C ) = 1 2 ⋅ K ⋅ K A B C r = L A B C 1 2 K A B C = L A B C s A B C \displaystyle{ \begin{aligned}L _{ A B C } & = L _{ A B O } + L _{ B C O } + L _{ A C O } \\ & = \frac{ 1 }{ 2 } \cdot A B \cdot r + \frac{ 1 }{ 2 } \cdot B C \cdot r + \frac{ 1 }{ 2 } \cdot A C \cdot r \\ & = \frac{ 1 }{ 2 } \cdot r \left( A B + B C + A C \right) \\ & = \frac{ 1 }{ 2 } \cdot K \cdot K _{ A B C } \\ r & = \frac{ L _{ A B C } }{ \frac{ 1 }{ 2 } K _{ A B C } } \\ & = \frac{ L _{ A B C } }{ s _{ A B C } }\end{aligned} } L A BC r = L A BO + L BCO + L A CO = 2 1 ⋅ A B ⋅ r + 2 1 ⋅ BC ⋅ r + 2 1 ⋅ A C ⋅ r = 2 1 ⋅ r ( A B + BC + A C ) = 2 1 ⋅ K ⋅ K A BC = 2 1 K A BC L A BC = s A BC L A BC
Dengan Menggunakan Trigonometri dan Teorema Heron
r 1 = A D tan ( α ) \displaystyle{ r _{ 1 } = A D \tan \left( \alpha \right) } r 1 = A D tan ( α )
A D = K 2 − B D − C E = a + b + c 2 − ( B E + C E ) = a + b + c 2 − a = a + b + c − 2 a 2 = b + c − a 2 \displaystyle{ \begin{aligned}A D & = \frac{ K }{ 2 } - B D - C E \\ & = \frac{ a + b + c }{ 2 } - \left( B E + C E \right) \\ & = \frac{ a + b + c }{ 2 } - a \\ & = \frac{ a + b + c - 2 a }{ 2 } \\ & = \frac{ b + c - a }{ 2 }\end{aligned} } A D = 2 K − B D − CE = 2 a + b + c − ( BE + CE ) = 2 a + b + c − a = 2 a + b + c − 2 a = 2 b + c − a
tan ( α ) = tan ( 1 2 ∠ A ) = 1 − cos ( ∠ A ) 1 + cos ( ∠ A ) \displaystyle{ \begin{aligned}\tan \left( \alpha \right) & = \tan \left( \frac{ 1 }{ 2 } \angle A \right) \\ & = \sqrt{ \frac{ 1 - \cos \left( \angle A \right) }{ 1 + \cos \left( \angle A \right) } }\end{aligned} } tan ( α ) = tan ( 2 1 ∠ A ) = 1 + cos ( ∠ A ) 1 − cos ( ∠ A )
a 2 = b 2 + c 2 − 2 ⋅ b ⋅ c ⋅ cos ( ∠ A ) cos ( ∠ A ) = a 2 − b 2 − c 2 − 2 b c cos ( ∠ A ) = b 2 + c 2 − a 2 2 b c \displaystyle{ \begin{aligned}a ^{ 2 } & = b ^{ 2 } + c ^{ 2 } - 2 \cdot b \cdot c \cdot \cos \left( \angle A \right) \\ \cos \left( \angle A \right) & = \frac{ a ^{ 2 } - b ^{ 2 } - c ^{ 2 } }{ - 2 b c } \\ \cos \left( \angle A \right) & = \frac{ b ^{ 2 } + c ^{ 2 } - a ^{ 2 } }{ 2 b c }\end{aligned} } a 2 cos ( ∠ A ) cos ( ∠ A ) = b 2 + c 2 − 2 ⋅ b ⋅ c ⋅ cos ( ∠ A ) = − 2 b c a 2 − b 2 − c 2 = 2 b c b 2 + c 2 − a 2
tan ( α ) = 1 − cos ( ∠ A ) 1 + cos ( ∠ A ) = 1 − b 2 + c 2 − a 2 2 b c 1 + b 2 + c 2 − a 2 2 b c = ( 2 b c − b 2 − c 2 + a 2 2 b c ) ( 2 b c + b 2 + c 2 − a 2 2 b c ) = − ( b 2 + c 2 − 2 b c ) + a 2 ( b 2 + c 2 + 2 b c ) − a 2 = a 2 − ( b 2 + c 2 − 2 b c ) ( b 2 + c 2 + 2 b c ) − a 2 \displaystyle{ \begin{aligned}\tan \left( \alpha \right) & = \sqrt{ \frac{ 1 - \cos \left( \angle A \right) }{ 1 + \cos \left( \angle A \right) } } \\ & = \sqrt{ \frac{ 1 - \frac{ b ^{ 2 } + c ^{ 2 } - a ^{ 2 } }{ 2 b c } }{ 1 + \frac{ b ^{ 2 } + c ^{ 2 } - a ^{ 2 } }{ 2 b c } } } \\ & = \sqrt{ \frac{ \left( \frac{ 2 b c - b ^{ 2 } - c ^{ 2 } + a ^{ 2 } }{ 2 b c } \right) }{ \left( \frac{ 2 b c + b ^{ 2 } + c ^{ 2 } - a ^{ 2 } }{ 2 b c } \right) } } \\ & = \sqrt{ \frac{ - \left( b ^{ 2 } + c ^{ 2 } - 2 b c \right) + a ^{ 2 } }{ \left( b ^{ 2 } + c ^{ 2 } + 2 b c \right) - a ^{ 2 } } } \\ & = \sqrt{ \frac{ a ^{ 2 } - \left( b ^{ 2 } + c ^{ 2 } - 2 b c \right) }{ \left( b ^{ 2 } + c ^{ 2 } + 2 b c \right) - a ^{ 2 } } }\end{aligned} } tan ( α ) = 1 + cos ( ∠ A ) 1 − cos ( ∠ A ) = 1 + 2 b c b 2 + c 2 − a 2 1 − 2 b c b 2 + c 2 − a 2 = ( 2 b c 2 b c + b 2 + c 2 − a 2 ) ( 2 b c 2 b c − b 2 − c 2 + a 2 ) = ( b 2 + c 2 + 2 b c ) − a 2 − ( b 2 + c 2 − 2 b c ) + a 2 = ( b 2 + c 2 + 2 b c ) − a 2 a 2 − ( b 2 + c 2 − 2 b c )
Ingat sifat:
( a + b ) 2 = a 2 + b 2 + 2 a b \displaystyle{ \left( a + b \right) ^{ 2 } = a ^{ 2 } + b ^{ 2 } + 2 ab } ( a + b ) 2 = a 2 + b 2 + 2 ab
( a − b ) 2 = a 2 + b 2 − 2 a b \displaystyle{ \left( a - b \right) ^{ 2 } = a ^{ 2 } + b ^{ 2 } - 2 ab } ( a − b ) 2 = a 2 + b 2 − 2 ab
( a + b ) ( a − b ) = a 2 − b 2 \displaystyle{ \left( a + b \right) \left( a - b \right) = a ^{ 2 } - b ^{ 2 } } ( a + b ) ( a − b ) = a 2 − b 2
tan ( α ) = a 2 − ( b 2 + c 2 − 2 b c ) ( b 2 + c 2 + 2 b c ) − a 2 tan ( α ) = a 2 − ( b − c ) 2 ( b + c ) 2 − a 2 = ( a + b − c ) ( a − b + c ) ( b + c + a ) ( b + c − a ) = ( a + b − c ) ( a + c − b ) ( b + c + a ) ( b + c − a ) \displaystyle{ \begin{aligned}\tan \left( \alpha \right) & = \sqrt{ \frac{ a ^{ 2 } - \left( b ^{ 2 } + c ^{ 2 } - 2 b c \right) }{ \left( b ^{ 2 } + c ^{ 2 } + 2 b c \right) - a ^{ 2 } } } \\ \tan \left( \alpha \right) & = \sqrt{ \frac{ a ^{ 2 } - \left( b - c \right) ^{ 2 } }{ \left( b + c \right) ^{ 2 } - a ^{ 2 } } } \\ & = \sqrt{ \frac{ \left( a + b - c \right) \left( a - b + c \right) }{ \left( b + c + a \right) \left( b + c - a \right) } } \\ & = \sqrt{ \frac{ \left( a + b - c \right) \left( a + c - b \right) }{ \left( b + c + a \right) \left( b + c - a \right) } }\end{aligned} } tan ( α ) tan ( α ) = ( b 2 + c 2 + 2 b c ) − a 2 a 2 − ( b 2 + c 2 − 2 b c ) = ( b + c ) 2 − a 2 a 2 − ( b − c ) 2 = ( b + c + a ) ( b + c − a ) ( a + b − c ) ( a − b + c ) = ( b + c + a ) ( b + c − a ) ( a + b − c ) ( a + c − b )
r 1 = A D tan ( α ) = ( b + c − a 2 ) ( a + b − c ) ( a + c − b ) ( b + c + a ) ( b + c − a ) = 1 2 ( b + c − a ) 2 ( a + b − c ) ( a + c − b ) ( b + c + a ) ( b + c − a ) = 1 2 ( b + c − a ) 2 ( a + b − c ) ( a + c − b ) ( b + c + a ) ( b + c − a ) = 1 2 ( b + c − a ) ( a + b − c ) ( a + c − b ) b + c + a = 1 2 ( b + c − a ) ( a + b − c ) ( a + c − b ) K \displaystyle{ \begin{aligned}r _{ 1 } & = A D \tan \left( \alpha \right) \\ & = \left( \frac{ b + c - a }{ 2 } \right) \sqrt{ \frac{ \left( a + b - c \right) \left( a + c - b \right) }{ \left( b + c + a \right) \left( b + c - a \right) } } \\ & = \frac{ 1 }{ 2 } \sqrt{ \frac{ \left( b + c - a \right) ^{ 2 } \left( a + b - c \right) \left( a + c - b \right) }{ \left( b + c + a \right) \left( b + c - a \right) } } \\ & = \frac{ 1 }{ 2 } \sqrt{ \frac{ \left( b + c - a \right) ^{ \cancel{ 2 } } \left( a + b - c \right) \left( a + c - b \right) }{ \left( b + c + a \right) \cancel{ \left( b + c - a \right) } } } \\ & = \frac{ 1 }{ 2 } \sqrt{ \frac{ \left( b + c - a \right) \left( a + b - c \right) \left( a + c - b \right) }{ b + c + a } } \\ & = \frac{ 1 }{ 2 } \sqrt{ \frac{ \left( b + c - a \right) \left( a + b - c \right) \left( a + c - b \right) }{ K } }\end{aligned} } r 1 = A D tan ( α ) = ( 2 b + c − a ) ( b + c + a ) ( b + c − a ) ( a + b − c ) ( a + c − b ) = 2 1 ( b + c + a ) ( b + c − a ) ( b + c − a ) 2 ( a + b − c ) ( a + c − b ) = 2 1 ( b + c + a ) ( b + c − a ) ( b + c − a ) 2 ( a + b − c ) ( a + c − b ) = 2 1 b + c + a ( b + c − a ) ( a + b − c ) ( a + c − b ) = 2 1 K ( b + c − a ) ( a + b − c ) ( a + c − b )
s = a + b + c 2 2 s = a + b + c \displaystyle{ \begin{aligned}s & = \frac{ a + b + c }{ 2 } \\ 2 s & = a + b + c\end{aligned} } s 2 s = 2 a + b + c = a + b + c
a + b − c = a + b + c − 2 c = 2 s − 2 c = 2 ( s − c ) \displaystyle{ \begin{aligned}a + b - c & = a + b + c - 2 c \\ & = 2 s - 2 c \\ & = 2 \left( s - c \right)\end{aligned} } a + b − c = a + b + c − 2 c = 2 s − 2 c = 2 ( s − c )
a + c − b = a + b + c − 2 b = 2 s − 2 b = 2 ( s − b ) \displaystyle{ \begin{aligned}a + c - b & = a + b + c - 2 b \\ & = 2 s - 2 b \\ & = 2 \left( s - b \right)\end{aligned} } a + c − b = a + b + c − 2 b = 2 s − 2 b = 2 ( s − b )
a + b − a = a + b + c − 2 a = 2 s − 2 a = 2 ( s − a ) \displaystyle{ \begin{aligned}a + b - a & = a + b + c - 2 a \\ & = 2 s - 2 a \\ & = 2 \left( s - a \right)\end{aligned} } a + b − a = a + b + c − 2 a = 2 s − 2 a = 2 ( s − a )
r 1 = 1 2 ( b + c − a ) ( a + b − c ) ( a + c − b ) K = 2 ( s − c ) 2 ( s − b ) 2 ( s − a ) 4 K = 2 ( s − c ) 2 ( s − b ) 2 ( s − a ) 4 K = ( s − c ) ( s − b ) 2 ( s − a ) K = ( s − c ) ( s − b ) ( s − a ) ( K 2 ) = ( s − a ) ( s − b ) ( s − c ) s × s s = s ( s − a ) ( s − b ) ( s − c ) s 2 = s ( s − a ) ( s − b ) ( s − c ) s = L s \displaystyle{ \begin{aligned}r _{ 1 } & = \frac{ 1 }{ 2 } \sqrt{ \frac{ \left( b + c - a \right) \left( a + b - c \right) \left( a + c - b \right) }{ K } } \\ & = \sqrt{ \frac{ 2 \left( s - c \right) 2 \left( s - b \right) 2 \left( s - a \right) }{ 4 K } } \\ & = \sqrt{ \frac{ \cancel{ 2 } \left( s - c \right) \cancel{ 2 } \left( s - b \right) 2 \left( s - a \right) }{ \cancel{ 4 } K } } \\ & = \sqrt{ \frac{ \left( s - c \right) \left( s - b \right) 2 \left( s - a \right) }{ K } } \\ & = \sqrt{ \frac{ \left( s - c \right) \left( s - b \right) \left( s - a \right) }{ \left( \frac{ K }{ 2 } \right) } } \\ & = \sqrt{ \frac{ \left( s - a \right) \left( s - b \right) \left( s - c \right) }{ s } } \times \frac{ \sqrt{ s } }{ \sqrt{ s } } \\ & = \sqrt{ \frac{ s \left( s - a \right) \left( s - b \right) \left( s - c \right) }{ s ^{ 2 } } } \\ & = \frac{ \sqrt{ s \left( s - a \right) \left( s - b \right) \left( s - c \right) } }{ s } \\ & = \frac{ L }{ s }\end{aligned} } r 1 = 2 1 K ( b + c − a ) ( a + b − c ) ( a + c − b ) = 4 K 2 ( s − c ) 2 ( s − b ) 2 ( s − a ) = 4 K 2 ( s − c ) 2 ( s − b ) 2 ( s − a ) = K ( s − c ) ( s − b ) 2 ( s − a ) = ( 2 K ) ( s − c ) ( s − b ) ( s − a ) = s ( s − a ) ( s − b ) ( s − c ) × s s = s 2 s ( s − a ) ( s − b ) ( s − c ) = s s ( s − a ) ( s − b ) ( s − c ) = s L
Dengan Menggunakan Luas Segitiga dan Trigonometri
r = r 1 = A O ⋅ sin ( α ) \displaystyle{ r = r _{ 1 } = A O \cdot \sin \left( \alpha \right) } r = r 1 = A O ⋅ sin ( α )
L = 1 2 ⋅ A B ( sin ( ∠ A ) A C ) = 1 2 ⋅ A B ⋅ A C ⋅ sin ( 2 α ) = 1 2 ⋅ A B ⋅ A C ⋅ 2 ⋅ sin ( α ) ⋅ cos ( α ) = 1 2 ⋅ A B ⋅ A C ⋅ 2 ⋅ sin ( α ) ⋅ cos ( α ) = A B ⋅ A C ⋅ sin ( α ) ⋅ cos ( α ) sin ( α ) = L A B ⋅ A C ⋅ cos ( α ) \displaystyle{ \begin{aligned}L & = \frac{ 1 }{ 2 } \cdot A B \left( \sin \left( \angle A \right) A C \right) \\ & = \frac{ 1 }{ 2 } \cdot A B \cdot A C \cdot \sin \left( 2 \alpha \right) \\ & = \frac{ 1 }{ 2 } \cdot A B \cdot A C \cdot 2 \cdot \sin \left( \alpha \right) \cdot \cos \left( \alpha \right) \\ & = \frac{ 1 }{ \cancel{ 2 } } \cdot A B \cdot A C \cdot \cancel{ 2 } \cdot \sin \left( \alpha \right) \cdot \cos \left( \alpha \right) \\ & = A B \cdot A C \cdot \sin \left( \alpha \right) \cdot \cos \left( \alpha \right) \\ \sin \left( \alpha \right) & = \frac{ L }{ A B \cdot A C \cdot \cos \left( \alpha \right) }\end{aligned} } L sin ( α ) = 2 1 ⋅ A B ( sin ( ∠ A ) A C ) = 2 1 ⋅ A B ⋅ A C ⋅ sin ( 2 α ) = 2 1 ⋅ A B ⋅ A C ⋅ 2 ⋅ sin ( α ) ⋅ cos ( α ) = 2 1 ⋅ A B ⋅ A C ⋅ 2 ⋅ sin ( α ) ⋅ cos ( α ) = A B ⋅ A C ⋅ sin ( α ) ⋅ cos ( α ) = A B ⋅ A C ⋅ cos ( α ) L
A D = A O ⋅ cos ( α ) A O = A D cos ( α ) \displaystyle{ \begin{aligned}A D & = A O \cdot \cos \left( \alpha \right) \\ A O & = \frac{ A D }{ \cos \left( \alpha \right) }\end{aligned} } A D A O = A O ⋅ cos ( α ) = cos ( α ) A D
r = A O ⋅ sin ( α ) = A D cos ( α ) ⋅ L A B ⋅ A C ⋅ cos ( α ) = L ⋅ A D A B ⋅ A C ⋅ cos ( α ) 2 = L ⋅ A D c ⋅ b ⋅ cos ( α ) 2 \displaystyle{ \begin{aligned}r & = A O \cdot \sin \left( \alpha \right) \\ & = \frac{ A D }{ \cos \left( \alpha \right) } \cdot \frac{ L }{ A B \cdot A C \cdot \cos \left( \alpha \right) } \\ & = \frac{ L \cdot A D }{ A B \cdot A C \cdot \cos \left( \alpha \right) ^{ 2 } } \\ & = \frac{ L \cdot A D }{ c \cdot b \cdot \cos \left( \alpha \right) ^{ 2 } }\end{aligned} } r = A O ⋅ sin ( α ) = cos ( α ) A D ⋅ A B ⋅ A C ⋅ cos ( α ) L = A B ⋅ A C ⋅ cos ( α ) 2 L ⋅ A D = c ⋅ b ⋅ cos ( α ) 2 L ⋅ A D
cos ( α ) = cos ( 1 2 ∠ A ) = 1 + cos ( ∠ A ) 2 = 1 + b 2 + c 2 − a 2 2 b c 2 = ( 2 b c + b 2 + c 2 − a 2 2 b c ) 2 = ( b 2 + c 2 + 2 b c ) − a 2 4 b c = ( b + c ) 2 − a 2 4 b c = ( b + c + a ) ( b + c − a ) 4 b c \displaystyle{ \begin{aligned}\cos \left( \alpha \right) & = \cos \left( \frac{ 1 }{ 2 } \angle A \right) \\ & = \sqrt{ \frac{ 1 + \cos \left( \angle A \right) }{ 2 } } \\ & = \sqrt{ \frac{ 1 + \frac{ b ^{ 2 } + c ^{ 2 } - a ^{ 2 } }{ 2 b c } }{ 2 } } \\ & = \sqrt{ \frac{ \left( \frac{ 2 b c + b ^{ 2 } + c ^{ 2 } - a ^{ 2 } }{ 2 b c } \right) }{ 2 } } \\ & = \sqrt{ \frac{ \left( b ^{ 2 } + c ^{ 2 } + 2 b c \right) - a ^{ 2 } }{ 4 b c } } \\ & = \sqrt{ \frac{ \left( b + c \right) ^{ 2 } - a ^{ 2 } }{ 4 b c } } \\ & = \sqrt{ \frac{ \left( b + c + a \right) \left( b + c - a \right) }{ 4 b c } }\end{aligned} } cos ( α ) = cos ( 2 1 ∠ A ) = 2 1 + cos ( ∠ A ) = 2 1 + 2 b c b 2 + c 2 − a 2 = 2 ( 2 b c 2 b c + b 2 + c 2 − a 2 ) = 4 b c ( b 2 + c 2 + 2 b c ) − a 2 = 4 b c ( b + c ) 2 − a 2 = 4 b c ( b + c + a ) ( b + c − a )
r = L ⋅ A D c ⋅ b ⋅ cos ( α ) 2 = L ⋅ A D c ⋅ b ⋅ ( ( b + c + a ) ( b + c − a ) 4 b c ) = L ⋅ A D ⋅ 4 b c c ⋅ b ⋅ ( b + c + a ) ( b + c − a ) = L ⋅ A D ⋅ 4 b c c ⋅ b ⋅ ( b + c + a ) ( b + c − a ) = L ⋅ A D ⋅ 4 ( b + c + a ) ( b + c − a ) \displaystyle{ \begin{aligned}r & = \frac{ L \cdot A D }{ c \cdot b \cdot \cos \left( \alpha \right) ^{ 2 } } \\ & = \frac{ L \cdot A D }{ c \cdot b \cdot \left( \frac{ \left( b + c + a \right) \left( b + c - a \right) }{ 4 b c } \right) } \\ & = \frac{ L \cdot A D \cdot 4 b c }{ c \cdot b \cdot \left( b + c + a \right) \left( b + c - a \right) } \\ & = \frac{ L \cdot A D \cdot 4 \cancel{ b c } }{ \cancel{ c \cdot b } \cdot \left( b + c + a \right) \left( b + c - a \right) } \\ & = \frac{ L \cdot A D \cdot 4 }{ \left( b + c + a \right) \left( b + c - a \right) }\end{aligned} } r = c ⋅ b ⋅ cos ( α ) 2 L ⋅ A D = c ⋅ b ⋅ ( 4 b c ( b + c + a ) ( b + c − a ) ) L ⋅ A D = c ⋅ b ⋅ ( b + c + a ) ( b + c − a ) L ⋅ A D ⋅ 4 b c = c ⋅ b ⋅ ( b + c + a ) ( b + c − a ) L ⋅ A D ⋅ 4 b c = ( b + c + a ) ( b + c − a ) L ⋅ A D ⋅ 4
Untuk A D \displaystyle{ A D } A D lihat penurunan di metode sebelumnya.
A D = b + c − a 2 \displaystyle{ A D = \frac{ b + c - a }{ 2 } } A D = 2 b + c − a
r = L ⋅ A D ⋅ 4 ( b + c + a ) ( b + c − a ) = L ⋅ ( b + c − a 2 ) ⋅ 4 ( b + c + a ) ( b + c − a ) = L ⋅ ( b + c − a ) ⋅ 4 2 ( b + c + a ) ( b + c − a ) = L ⋅ 4 2 K = L 1 2 K = L s \displaystyle{ \begin{aligned}r & = \frac{ L \cdot A D \cdot 4 }{ \left( b + c + a \right) \left( b + c - a \right) } \\ & = \frac{ L \cdot \left( \frac{ b + c - a }{ 2 } \right) \cdot 4 }{ \left( b + c + a \right) \left( b + c - a \right) } \\ & = \frac{ L \cdot \left( b + c - a \right) \cdot 4 }{ 2 \left( b + c + a \right) \left( b + c - a \right) } \\ & = \frac{ L \cdot 4 }{ 2 K } \\ & = \frac{ L }{ \frac{ 1 }{ 2 } K } \\ & = \frac{ L }{ s }\end{aligned} } r = ( b + c + a ) ( b + c − a ) L ⋅ A D ⋅ 4 = ( b + c + a ) ( b + c − a ) L ⋅ ( 2 b + c − a ) ⋅ 4 = 2 ( b + c + a ) ( b + c − a ) L ⋅ ( b + c − a ) ⋅ 4 = 2 K L ⋅ 4 = 2 1 K L = s L