Dari Segitiga 72-36-72
Untuk mengetahuinya kita membuat segitiga sama kaki dengan sudut 72 ° − 36 ° − 72 ° 72\degree-36\degree-72\degree 72° − 36° − 72° dan
panjang kaki 1.
Pertama kita cari tahu panjang AC, kita misalkan A C = x AC = x A C = x . Kita buat garis bagi dari C sehingga
memotong AB di D sehingga sudut ∠ A C B \angle ACB ∠ A CB terbelah menjadi 2 sudut yang sama besar yaitu
∠ A C D \angle ACD ∠ A C D dan ∠ D C B \angle DCB ∠ D CB . Keduanya berarti mempunyai besar 36 ° 36\degree 36° .
Sekarang kita menentukan besar 2 sudut lain yang belum diketahui.
∠ C A D + ∠ A C D + ∠ C D A = 180 ° ∠ C D A = 180 ° − 72 ° − 36 ° ∠ C D A = 72 ° ∠ D C B + ∠ C B D + ∠ B D C = 180 ° ∠ C D A = 180 ° − 36 ° − 36 ° ∠ C D A = 108 ° \begin{align*}
\angle CAD+\angle ACD+\angle CDA & =180\degree\\
\angle CDA & =180\degree-72\degree-36\degree\\
\angle CDA & =72\degree\\
\angle DCB+\angle CBD+\angle BDC & =180\degree\\
\angle CDA & =180\degree-36\degree-36\degree\\
\angle CDA & =108\degree
\end{align*}
∠ C A D + ∠ A C D + ∠ C D A ∠ C D A ∠ C D A ∠ D CB + ∠ CB D + ∠ B D C ∠ C D A ∠ C D A = 180° = 180° − 72° − 36° = 72° = 180° = 180° − 36° − 36° = 108°
△ A C D \triangle ACD △ A C D adalah segitiga sama kaki, sehingga sisi di depan sudut 72 ° 72\degree 72° mempunyai
panjang sama. Bisa diutlis C D = A C = x CD = AC = x C D = A C = x
△ B C D \triangle BCD △ BC D adalah segitiga sama kaki, sehingga sisi di depan sudut 36 ° 36\degree 36° mempunyai
panjang sama. Bisa ditulis: B D = C D = x BD = CD = x B D = C D = x
Panjang AB adalah 1, sehingga
A D = A B − B D = 1 − x \begin{align*}
AD &= AB - BD\\
&= 1 - x
\end{align*}
A D = A B − B D = 1 − x
Sudut internal segitiga ABC dan ACD sama sehingga kedua segitiga sebangun. Maka:
△ A B C ∼ △ A C D depan 72 ° depan 36 ° = depan 72 ° depan 36 ° 1 x = x A D A D = x 2 \begin{align*}
\triangle ABC & \sim\triangle ACD\\
\frac{\text{depan }72\degree}{\text{depan }36\degree} & =\frac{\text{depan }72\degree}{\text{depan }36\degree}\\
\frac{1}{x} & =\frac{x}{AD}\\
AD & =x^{2}
\end{align*}
△ A BC depan 36° depan 72° x 1 A D ∼ △ A C D = depan 36° depan 72° = A D x = x 2
Kita samakan kedua persamaan yang menyatakan panjang AD
A D = A D x 2 = 1 − x x 2 ⏟ a + x ⏟ b − 1 ⏟ c = 0 x = − b ± b 2 − 4 a c 2 a = − 1 ± 1 2 − 4 ( 1 ) ( − 1 ) 2 ⋅ 1 = − 1 ± 1 − ( − 4 ) 2 = − 1 ± 5 2 = ± 5 − 1 2 \begin{align*}
AD & =AD\\
x^{2} & =1-x\\
\underbrace{x^{2}}_{a}+\underbrace{x}_{b}-\underbrace{1}_{c} & =0\\
x & =\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}\\
& =\frac{-1\pm\sqrt{1^{2}-4(1)(-1)}}{2\cdot1}\\
& =\frac{-1\pm\sqrt{1-(-4)}}{2}\\
& =\frac{-1\pm\sqrt{5}}{2}\\
& =\frac{\pm\sqrt{5}-1}{2}
\end{align*}
A D x 2 a x 2 + b x − c 1 x = A D = 1 − x = 0 = 2 a − b ± b 2 − 4 a c = 2 ⋅ 1 − 1 ± 1 2 − 4 ( 1 ) ( − 1 ) = 2 − 1 ± 1 − ( − 4 ) = 2 − 1 ± 5 = 2 ± 5 − 1
Karena AD adalah jarak maka harus positif sehingga:
x = 5 − 1 2 x =\frac{\sqrt{5}-1}{2}
x = 2 5 − 1
Pada segitiga awal tadi, kita buat garis tinggi dari B yang memotong AC di E.
△ A B C \triangle ABC △ A BC terpotong menjadi 2 segitiga siku-siku. Karena sudut ∠ B A E = 72 ° \angle BAE = 72 \degree ∠ B A E = 72° , maka
∠ A B E = 90 ° − 72 ° = 18 ° \angle ABE = 90\degree - 72\degree = 18\degree ∠ A BE = 90° − 72° = 18° . Karena sudut ∠ B C E = 72 ° \angle BCE = 72 \degree ∠ BCE = 72° , maka
∠ C B E = 90 ° − 72 ° = 18 ° \angle CBE = 90\degree - 72\degree = 18\degree ∠ CBE = 90° − 72° = 18° . Karena mempunyai sudut internal yang sama, berbagi
satu garis sebagai sisidan salah satu sisinya sama panjang, maka △ A B E \triangle ABE △ A BE kongruen dengan
△ B C E \triangle BCE △ BCE . Jadi sisi didepan sudut 18 ° 18\degree 18° pada kedua segitiga mempunyai panjang sama
(A E = E C AE = EC A E = EC ). Sehingga:
A E = 1 2 A C = 1 2 x = 1 2 ( 5 − 1 2 ) = 5 − 1 4 \begin{align*}
AE & =\frac{1}{2}AC\\
& =\frac{1}{2}x\\
& =\frac{1}{2}\left(\frac{\sqrt{5}-1}{2}\right)\\
& =\frac{\sqrt{5}-1}{4}
\end{align*}
A E = 2 1 A C = 2 1 x = 2 1 ( 2 5 − 1 ) = 4 5 − 1
Sekarang kita bisa mengetahui panjang EB dengan menggunakan Hukum Phytagoras.
A E 2 + B E 2 = A B 2 B E 2 = A B 2 − A E 2 = 1 2 − ( 5 − 1 4 ) 2 = 1 − 5 − 2 5 + 1 16 = 16 16 − 6 − 2 5 16 = 16 − 6 + 2 5 16 = 10 + 2 5 16 B E = 10 + 2 5 16 = 10 + 2 5 4 \begin{align*}
AE^{2}+BE^{2} & =AB^{2}\\
BE^{2} & =AB^{2}-AE^{2}\\
& =1^{2}-\left(\frac{\sqrt{5}-1}{4}\right)^{2}\\
& =1-\frac{5-2\sqrt{5}+1}{16}\\
& =\frac{16}{16}-\frac{6-2\sqrt{5}}{16}\\
& =\frac{16-6+2\sqrt{5}}{16}\\
& =\frac{10+2\sqrt{5}}{16}\\
BE & =\sqrt{\frac{10+2\sqrt{5}}{16}}\\
& =\frac{\sqrt{10+2\sqrt{5}}}{4}
\end{align*}
A E 2 + B E 2 B E 2 BE = A B 2 = A B 2 − A E 2 = 1 2 − ( 4 5 − 1 ) 2 = 1 − 16 5 − 2 5 + 1 = 16 16 − 16 6 − 2 5 = 16 16 − 6 + 2 5 = 16 10 + 2 5 = 16 10 + 2 5 = 4 10 + 2 5
Sekarang kita bisa mengetahui nilai trigonometri sudut 18 ° 18\degree 18° dan 72 ° 72\degree 72°
sin ( ∠ A B E ) = sin ( 18 ° ) = A E E B = 5 − 1 4 cos ( ∠ A B E ) = cos ( 18 ° ) = B E A B = 10 + 2 5 4 tan ( ∠ A B E ) = tan ( 18 ° ) = A E B E = ( 5 − 1 4 ) ( 4 10 + 2 5 ) = 5 − 1 10 + 2 5 = ( 5 − 1 ) 2 10 + 2 5 = ( 5 − 1 ) 2 10 + 2 5 × 10 − 2 5 10 − 2 5 = ( 5 − 2 5 + 1 ) ( 10 − 2 5 ) 100 − 4 ⋅ 5 = ( 6 − 2 5 ) ( 10 − 2 5 ) 100 − 20 = 2 ( 3 − 5 ) 2 ( 5 − 5 ) 80 = ( 3 − 5 ) ( 5 − 5 ) 20 = 15 − 3 5 − 5 5 + 5 20 = 20 − 8 5 20 = 4 ( 5 − 2 5 ) 4 ( 5 ) = 5 − 2 5 5 sin ( ∠ B A E ) = sin ( 72 ° ) = B E A B = 10 + 2 5 4 cos ( ∠ B A E ) = cos ( 72 ° ) = A E E B = 5 − 1 4 tan ( ∠ B A E ) = tan ( 72 ° ) = B E A E = ( 10 + 2 5 4 ) ( 4 5 − 1 ) = 10 + 2 5 5 − 1 = 10 + 2 5 ( 5 − 1 ) 2 = 10 + 2 5 ( 5 − 1 ) 2 = 10 + 2 5 5 − 2 5 + 1 = 10 + 2 5 6 − 2 5 = 2 ( 5 + 5 ) 2 ( 3 − 5 ) = 5 + 5 3 − 5 × 3 + 5 3 + 5 = 15 + 5 5 + 3 5 + 5 9 − 5 = 20 + 8 5 4 = 4 ( 5 + 2 5 ) 4 = 5 + 2 5 \begin{align*}
\sin(\angle ABE) & =\sin(18\degree)\\
& =\frac{AE}{EB}\\
& =\frac{\sqrt{5}-1}{4}\\
\cos(\angle ABE) & =\cos(18\degree)\\
& =\frac{BE}{AB}\\
& =\frac{\sqrt{10+2\sqrt{5}}}{4}\\
\tan(\angle ABE) & =\tan(18\degree)\\
& =\frac{AE}{BE}\\
& =\left(\frac{\sqrt{5}-1}{4}\right)\left(\frac{4}{\sqrt{10+2\sqrt{5}}}\right)\\
& =\frac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}\\
& =\frac{\sqrt{(\sqrt{5}-1)^{2}}}{\sqrt{10+2\sqrt{5}}}\\
& =\sqrt{\frac{(\sqrt{5}-1)^{2}}{10+2\sqrt{5}}}\times\sqrt{\frac{10-2\sqrt{5}}{10-2\sqrt{5}}}\\
& =\sqrt{\frac{(5-2\sqrt{5}+1)(10-2\sqrt{5})}{100-4\cdot5}}\\
& =\sqrt{\frac{(6-2\sqrt{5})(10-2\sqrt{5})}{100-20}}\\
& =\sqrt{\frac{2(3-\sqrt{5})2(5-\sqrt{5})}{80}}\\
& =\sqrt{\frac{(3-\sqrt{5})(5-\sqrt{5})}{20}}\\
& =\sqrt{\frac{15-3\sqrt{5}-5\sqrt{5}+5}{20}}\\
& =\sqrt{\frac{20-8\sqrt{5}}{20}}\\
& =\sqrt{\frac{4(5-2\sqrt{5})}{4(5)}}\\
& =\sqrt{\frac{5-2\sqrt{5}}{5}}\\
\sin(\angle BAE) & =\sin(72\degree)\\
& =\frac{BE}{AB}\\
& =\frac{\sqrt{10+2\sqrt{5}}}{4}\\
\cos(\angle BAE) & =\cos(72\degree)\\
& =\frac{AE}{EB}\\
& =\frac{\sqrt{5}-1}{4}\\
\tan(\angle BAE) & =\tan(72\degree)\\
& =\frac{BE}{AE}\\
& =\left(\frac{\sqrt{10+2\sqrt{5}}}{4}\right)\left(\frac{4}{\sqrt{5}-1}\right)\\
& =\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}-1}\\
& =\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{\left(\sqrt{5}-1\right)^{2}}}\\
& =\sqrt{\frac{10+2\sqrt{5}}{\left(\sqrt{5}-1\right)^{2}}}\\
& =\sqrt{\frac{10+2\sqrt{5}}{5-2\sqrt{5}+1}}\\
& =\sqrt{\frac{10+2\sqrt{5}}{6-2\sqrt{5}}}\\
& =\sqrt{\frac{2\left(5+\sqrt{5}\right)}{2\left(3-\sqrt{5}\right)}}\\
& =\sqrt{\frac{5+\sqrt{5}}{3-\sqrt{5}}}\times\sqrt{\frac{3+\sqrt{5}}{3+\sqrt{5}}}\\
& =\sqrt{\frac{15+5\sqrt{5}+3\sqrt{5}+5}{9-5}}\\
& =\sqrt{\frac{20+8\sqrt{5}}{4}}\\
& =\sqrt{\frac{4\left(5+2\sqrt{5}\right)}{4}}\\
& =\sqrt{5+2\sqrt{5}}
\end{align*}
sin ( ∠ A BE ) cos ( ∠ A BE ) tan ( ∠ A BE ) sin ( ∠ B A E ) cos ( ∠ B A E ) tan ( ∠ B A E ) = sin ( 18° ) = EB A E = 4 5 − 1 = cos ( 18° ) = A B BE = 4 10 + 2 5 = tan ( 18° ) = BE A E = ( 4 5 − 1 ) ( 10 + 2 5 4 ) = 10 + 2 5 5 − 1 = 10 + 2 5 ( 5 − 1 ) 2 = 10 + 2 5 ( 5 − 1 ) 2 × 10 − 2 5 10 − 2 5 = 100 − 4 ⋅ 5 ( 5 − 2 5 + 1 ) ( 10 − 2 5 ) = 100 − 20 ( 6 − 2 5 ) ( 10 − 2 5 ) = 80 2 ( 3 − 5 ) 2 ( 5 − 5 ) = 20 ( 3 − 5 ) ( 5 − 5 ) = 20 15 − 3 5 − 5 5 + 5 = 20 20 − 8 5 = 4 ( 5 ) 4 ( 5 − 2 5 ) = 5 5 − 2 5 = sin ( 72° ) = A B BE = 4 10 + 2 5 = cos ( 72° ) = EB A E = 4 5 − 1 = tan ( 72° ) = A E BE = ( 4 10 + 2 5 ) ( 5 − 1 4 ) = 5 − 1 10 + 2 5 = ( 5 − 1 ) 2 10 + 2 5 = ( 5 − 1 ) 2 10 + 2 5 = 5 − 2 5 + 1 10 + 2 5 = 6 − 2 5 10 + 2 5 = 2 ( 3 − 5 ) 2 ( 5 + 5 ) = 3 − 5 5 + 5 × 3 + 5 3 + 5 = 9 − 5 15 + 5 5 + 3 5 + 5 = 4 20 + 8 5 = 4 4 ( 5 + 2 5 ) = 5 + 2 5
Kesimpulan
Nilai fungsi trigonometri sudut 15 ° 15\degree 15°
sin ( 18 ° ) = 5 − 1 4 cos ( 18 ° ) = 10 + 2 5 4 tan ( 18 ° ) = 5 − 2 5 5 sin ( 72 ° ) = 10 + 2 5 4 cos ( 72 ° ) = 5 − 1 4 tan ( 72 ° ) = 5 + 2 5 \begin{align*}
\sin(18\degree) &=\frac{\sqrt{5}-1}{4}\\
\cos(18\degree) &=\frac{\sqrt{10+2\sqrt{5}}}{4}\\
\tan(18\degree) &=\sqrt{\frac{5-2\sqrt{5}}{5}}\\
\sin(72\degree) &=\frac{\sqrt{10+2\sqrt{5}}}{4}\\
\cos(72\degree) &=\frac{\sqrt{5}-1}{4}\\
\tan(72\degree) &=\sqrt{5+2\sqrt{5}}
\end{align*}
sin ( 18° ) cos ( 18° ) tan ( 18° ) sin ( 72° ) cos ( 72° ) tan ( 72° ) = 4 5 − 1 = 4 10 + 2 5 = 5 5 − 2 5 = 4 10 + 2 5 = 4 5 − 1 = 5 + 2 5