Hukum Sinus Created at 2022-03-27. Updated at 2022-04-25. sin∠A=dbd=bsin∠Asin∠B=dad=asin∠Bsin∠Aa=sin∠Bb\begin{align*} \sin\angle A & =\frac{d}{b}\\ d & =b\sin\angle A\\ \sin\angle B & =\frac{d}{a}\\ d & =a\sin\angle B\\ \frac{\sin\angle A}{a} & =\frac{\sin\angle B}{b} \end{align*} sin∠Adsin∠Bdasin∠A=bd=bsin∠A=ad=asin∠B=bsin∠B Jika diturunkan lagi ditemukan: sin∠Aa=sin∠Bb=sin∠Cc\frac{\sin\angle A}{a}=\frac{\sin\angle B}{b}=\frac{\sin\angle C}{c} asin∠A=bsin∠B=csin∠C Bisa juga ditulis 1(sin∠Aa)=1(sin∠Bb)=1(sin∠Cc)asin∠A=bsin∠B=csin∠C\begin{alignat*}{3} \frac{1}{\left(\frac{\sin\angle A}{a}\right)} & = & \frac{1}{\left(\frac{\sin\angle B}{b}\right)} & = & \frac{1}{\left(\frac{\sin\angle C}{c}\right)}\\ \frac{a}{\sin\angle A} & = & \frac{b}{\sin\angle B} & = & \frac{c}{\sin\angle C} \end{alignat*} (asin∠A)1sin∠Aa==(bsin∠B)1sin∠Bb==(csin∠C)1sin∠Cc