Levi Rizki Saputra Notes

Lingkaran luar Segitiga

Created at . Updated at .

Lingkaran luar segitiga adalah lingkaran yang berada di luar segitiga dan ketiga sisi segitiga menyentuh (keliling/garis luar) lingkaran.

Lingkaran Luar Segitiga

Lingkaran O merupakan lingkaran luar pada segitiga ABC karena titik A, B, dan C berada di lingkaran O.

Untuk mengetahui jari-jari lingkaran kita bisa menganalisa segitiga dan lingkaran di samping.

Jari-Jari Lingkaran Luar Segitiga

Sudut ACB\displaystyle{ \angle A C B } merupakan sudut keliling lingkaran dan sudut AOB\displaystyle{ \angle A O B } merupakan sudut pusat lingkaran. Sudut ACB\displaystyle{ \angle A C B } dan AOB\displaystyle{ \angle A O B } menghadapi busur yang sama yaitu busur AB\displaystyle{ A B }. Sehingga berlaku

AOB=2(ACB)\displaystyle{ \angle A O B = 2 \left( \angle A C B \right) }

AO\displaystyle{ A O } merupakan jari-jari lingkaran. Begitu juga dengan BO\displaystyle{ B O } sehingga AO=BO\displaystyle{ A O = B O } . Jadi segitiga AOB merupakan segitiga sama kaki. Karena AOB merupakan segitiga sama kaki, maka OAB=OBA\displaystyle{ \angle O A B = \angle O B A }. Jumlah sudut internal segitiga AOB adalah 180°\displaystyle{ 180 \degree }, maka:

OAB+AOB+OBA=180°OAB+2(ACB)+OAB=180°2(OAB)+2(ACB)=180°2(OAB+ACB)=180°OAB+ACB=90°\displaystyle{ \begin{aligned}\angle O A B + \angle A O B + \angle O B A = 180 \degree \\ \angle O A B + 2 \left( \angle A C B \right) + \angle O A B = 180 \degree \\ 2 \left( \angle O A B \right) + 2 \left( \angle A C B \right) = 180 \degree \\ 2 \left( \angle O A B + \angle A C B \right) = 180 \degree \\ \angle O A B + \angle A C B = 90 \degree\end{aligned} }

Berlaku hukum sinus pada segitiga AOB seperti berikut:

AOsin(ABO)=OBsin(OAB)=ABsin(AOB)rsin(OAB)=rsin(OAB)=ABsin(AOB)rsin(OAB)=ABsin(AOB)\displaystyle{ \begin{aligned}\frac{ A O }{ \sin \left( \angle A B O \right) } = & \frac{ O B }{ \sin \left( \angle O A B \right) } = \frac{ A B }{ \sin \left( \angle A O B \right) } \\ \frac{ r }{ \sin \left( \angle O A B \right) } = & \frac{ r }{ \sin \left( \angle O A B \right) } = \frac{ A B }{ \sin \left( \angle A O B \right) } \\ & \frac{ r }{ \sin \left( \angle O A B \right) } = \frac{ A B }{ \sin \left( \angle A O B \right) }\end{aligned} }

r=ABsin(OAB)sin(AOB)\displaystyle{ r = \frac{ A B \cdot \sin \left( \angle O A B \right) }{ \sin \left( \angle A O B \right) } }

sin(AOB)=sin(2ACB)=2sin(ACB)cos(ACB)\displaystyle{ \begin{aligned}\sin \left( \angle A O B \right) & = \sin \left( 2 \angle A C B \right) \\ & = 2 \sin \left( \angle A C B \right) \cos \left( \angle A C B \right)\end{aligned} }

OAB+ACB=90°OAB=90°ACBsin(OAB)=sin(90°ACB)=cos(ACB)\displaystyle{ \begin{aligned}\angle O A B + \angle A C B & = 90 \degree \\ \angle O A B & = 90 \degree - \angle A C B \\ \sin \left( \angle O A B \right) & = \sin \left( 90 \degree - \angle A C B \right) \\ & = \cos \left( \angle A C B \right)\end{aligned} }

r=ABsin(OAB)sin(AOB)=ABcos(ACB)2sin(ACB)cos(ACB)=AB2sin(ACB)\displaystyle{ \begin{aligned}r & = \frac{ A B \cdot \sin \left( \angle O A B \right) }{ \sin \left( \angle A O B \right) } \\ & = \frac{ A B \cdot \cos \left( \angle A C B \right) }{ 2 \sin \left( \angle A C B \right) \cos \left( \angle A C B \right) } \\ & = \frac{ A B }{ 2 \sin \left( \angle A C B \right) }\end{aligned} }

Luas Segitiga ABC

Luas segitiga ABC bisa dicari dengan trigonometri:

LABC=12alastinggi=12AC(BCsin(ACB))sin(ACB)=2LABCACBC\displaystyle{ \begin{aligned}L _{ A B C } & = \frac{ 1 }{ 2 } \cdot \text{alas} \cdot \text{tinggi} \\ & = \frac{ 1 }{ 2 } A C \left( B C \cdot \sin \left( \angle A C B \right) \right) \\ \sin \left( \angle A C B \right) & = \frac{ 2 L _{ A B C } }{ A C \cdot B C }\end{aligned} }

r=AB2sin(ACB)=AB2(2LABCACBC)=ABACBC4LABC\displaystyle{ \begin{aligned}r & = \frac{ A B }{ 2 \sin \left( \angle A C B \right) } \\ & = \frac{ A B }{ 2 \left( \displaystyle \frac{ 2 L _{ A B C } }{ A C \cdot B C } \right) } \\ & = \frac{ A B \cdot A C \cdot B C }{ 4 L _{ A B C } }\end{aligned} }

Hari hari lingkaran luas yang berada di luar segitiga ABc bisa dicari dengan:

r=ABACBC4LABC\displaystyle{ r = \frac{ A B \cdot A C \cdot B C }{ 4 L _{ A B C } } }

# Alternatif Penurunan dengan Hukum Cosinus dan Identitas Trigonometri serta Teorema Heron

Berlaku hukum Cosinus pada segitiga ABC dengan sudut ABC\displaystyle{ \angle A B C }

AB2=AC2+BC22ACBCcos(ACB)cos(ACB)=AB2AC2BC22ACBC=AC2+BC2AB22ACBC\displaystyle{ \begin{aligned}A B ^{ 2 } & = A C ^{ 2 } + B C ^{ 2 } - 2 \cdot A C \cdot B C \cdot \cos \left( \angle A C B \right) \\ \cos \left( \angle A C B \right) & = \frac{ A B ^{ 2 } - A C ^{ 2 } - B C ^{ 2 } }{ - 2 \cdot A C \cdot B C } \\ & = \frac{ A C ^{ 2 } + B C ^{ 2 } - A B ^{ 2 } }{ 2 \cdot A C \cdot B C }\end{aligned} }

Untuk mendapatkan nilai sin dapat digunakan identitas trigonometri:

sin2(ACB)+cos2(ACB)=1sin2(ACB)=1cos2(ACB)\displaystyle{ \begin{aligned}\sin ^{ 2 } \left( \angle A C B \right) + \cos ^{ 2 } \left( \angle A C B \right) & = 1 \\ \sin ^{ 2 } \left( \angle A C B \right) & = 1 - \cos ^{ 2 } \left( \angle A C B \right)\end{aligned} }

sin2(ACB)=1(AC2+BC2AB22ACBC)2=1(AC2+BC2AB2)2(2ACBC)2=(2ACBC)2(AC2+BC2AB2)2(2ACBC)2=(2ACBC+(AC2+BC2AB2))(2ACBC(AC2+BC2AB2))(2ACBC)2=(2ACBC+AC2+BC2AB2)(2ACBCAC2BC2+AB2)(2ACBC)2=((AC2+BC2+2ACBC)AB2)((AC2+BC22ACBC)+AB2)(2ACBC)2=((AC+BC)2AB2)((ACBC)2+AB2)(2ACBC)2=((AC+BC)2AB2)(AB2(ACBC)2)(2ACBC)2=(AC+BC+AB)(AC+BCAB)(AB+(ACBC))(AB(ACBC))(2ACBC)2=(AC+BC+AB)(AC+BCAB)(AB+ACBC)(ABAC+BC)(2ACBC)2\displaystyle{ \begin{aligned}\sin ^{ 2 } \left( \angle A C B \right) & = 1 - \left( \frac{ A C ^{ 2 } + B C ^{ 2 } - A B ^{ 2 } }{ 2 \cdot A C \cdot B C } \right) ^{ 2 } \\ & = 1 - \frac{ \left( A C ^{ 2 } + B C ^{ 2 } - A B ^{ 2 } \right) ^{ 2 } }{ \left( 2 \cdot A C \cdot B C \right) ^{ 2 } } \\ & = \frac{ \left( 2 \cdot A C \cdot B C \right) ^{ 2 } - \left( A C ^{ 2 } + B C ^{ 2 } - A B ^{ 2 } \right) ^{ 2 } }{ \left( 2 \cdot A C \cdot B C \right) ^{ 2 } } \\ & = \frac{ \left( 2 \cdot A C \cdot B C + \left( A C ^{ 2 } + B C ^{ 2 } - A B ^{ 2 } \right) \right) \left( 2 \cdot A C \cdot B C - \left( A C ^{ 2 } + B C ^{ 2 } - A B ^{ 2 } \right) \right) }{ \left( 2 \cdot A C \cdot B C \right) ^{ 2 } } \\ & = \frac{ \left( 2 \cdot A C \cdot B C + A C ^{ 2 } + B C ^{ 2 } - A B ^{ 2 } \right) \left( 2 \cdot A C \cdot B C - A C ^{ 2 } - B C ^{ 2 } + A B ^{ 2 } \right) }{ \left( 2 \cdot A C \cdot B C \right) ^{ 2 } } \\ & = \frac{ \left( \left( A C ^{ 2 } + B C ^{ 2 } + 2 \cdot A C \cdot B C \right) - A B ^{ 2 } \right) \left( - \left( A C ^{ 2 } + B C ^{ 2 } - 2 \cdot A C \cdot B C \right) + A B ^{ 2 } \right) }{ \left( 2 \cdot A C \cdot B C \right) ^{ 2 } } \\ & = \frac{ \left( \left( A C + B C \right) ^{ 2 } - A B ^{ 2 } \right) \left( - \left( A C - B C \right) ^{ 2 } + A B ^{ 2 } \right) }{ \left( 2 \cdot A C \cdot B C \right) ^{ 2 } } \\ & = \frac{ \left( \left( A C + B C \right) ^{ 2 } - A B ^{ 2 } \right) \left( A B ^{ 2 } - \left( A C - B C \right) ^{ 2 } \right) }{ \left( 2 \cdot A C \cdot B C \right) ^{ 2 } } \\ & = \frac{ \left( A C + B C + A B \right) \left( A C + B C - A B \right) \left( A B + \left( A C - B C \right) \right) \left( A B - \left( A C - B C \right) \right) }{ \left( 2 \cdot A C \cdot B C \right) ^{ 2 } } \\ & = \frac{ \left( A C + B C + A B \right) \left( A C + B C - A B \right) \left( A B + A C - B C \right) \left( A B - A C + B C \right) }{ \left( 2 \cdot A C \cdot B C \right) ^{ 2 } }\end{aligned} }

AC+BC+AB=K=2sAC+BCAB=AC+BC+AB2AB=2s2AB=2(sAB)AB+ACBC=AB+AC+BC2BC=2s2BC=2(sBC)AC+BCAB=AC+BC+AB2AB=2s2AB=2(sAB)ABAC+BC=AB+AC+BC2AC=2s2AC=2(sAC)\displaystyle{ \begin{aligned}A C + B C + A B & = K = 2 s \\ A C + B C - A B & = A C + B C + A B - 2 A B \\ & = 2 s - 2 A B \\ & = 2 \left( s - A B \right) \\ A B + A C - B C & = A B + A C + B C - 2 B C \\ & = 2 s - 2 B C \\ & = 2 \left( s - B C \right) \\ A C + B C - A B & = A C + B C + A B - 2 A B \\ & = 2 s - 2 A B \\ & = 2 \left( s - A B \right) \\ A B - A C + B C & = A B + A C + B C - 2 A C \\ & = 2 s - 2 A C \\ & = 2 \left( s - A C \right)\end{aligned} }

sin2(ACB)=(AC+BC+AB)(AC+BCAB)(AB+ACBC)(ABAC+BC)(2ACBC)2=(2s)(2(sAB))(2(sBC))(2(sAC))(2ACBC)2=16s(sAB)(sBC)(sAC)4AC2BC2=4s(sAB)(sBC)(sAC)AC2BC2sin(ACB)=4s(sAB)(sBC)(sAC)AC2BC2=2s(sAB)(sBC)(sAC)ACBC=2s(sAB)(sBC)(sAC)ACBC=2LABCACBC\displaystyle{ \begin{aligned}\sin ^{ 2 } \left( \angle A C B \right) & = \frac{ \left( A C + B C + A B \right) \left( A C + B C - A B \right) \left( A B + A C - B C \right) \left( A B - A C + B C \right) }{ \left( 2 \cdot A C \cdot B C \right) ^{ 2 } } \\ & = \frac{ \left( 2 s \right) \left( 2 \left( s - A B \right) \right) \left( 2 \left( s - B C \right) \right) \left( 2 \left( s - A C \right) \right) }{ \left( 2 \cdot A C \cdot B C \right) ^{ 2 } } \\ & = \frac{ 16 s \left( s - A B \right) \left( s - B C \right) \left( s - A C \right) }{ 4 \cdot A C ^{ 2 } \cdot B C ^{ 2 } } \\ & = \frac{ 4 s \left( s - A B \right) \left( s - B C \right) \left( s - A C \right) }{ A C ^{ 2 } \cdot B C ^{ 2 } } \\ \sin \left( \angle A C B \right) & = \sqrt{ \frac{ 4 s \left( s - A B \right) \left( s - B C \right) \left( s - A C \right) }{ A C ^{ 2 } \cdot B C ^{ 2 } } } \\ & = \frac{ 2 \sqrt{ s \left( s - A B \right) \left( s - B C \right) \left( s - A C \right) } }{ A C \cdot B C } \\ & = \frac{ 2 \sqrt{ s \left( s - A B \right) \left( s - B C \right) \left( s - A C \right) } }{ A C \cdot B C } \\ & = \frac{ 2 L _{ A B C } }{ A C \cdot B C }\end{aligned} }

r=AB2sin(ACB)=AB2(2LABCACBC)=ABACBC4LABC\displaystyle{ \begin{aligned}r & = \frac{ A B }{ 2 \sin \left( \angle A C B \right) } \\ & = \frac{ A B }{ 2 \left( \displaystyle \frac{ 2 L _{ A B C } }{ A C \cdot B C } \right) } \\ & = \frac{ A B \cdot A C \cdot B C }{ 4 L _{ A B C } }\end{aligned} }