Levi Rizki Saputra Notes

Rumus Jumlah dan Perkalian Akar

Created at . Updated at .

Semua rumus di yang akan kita turunkan berlaku untuk persamaan:

ax2+bx+c=0ax^2 + bx + c = 0

Sehingga kita menggunakan rumus abc. Sebenarnya rumus jumlah akar dan perkalian bisa ditemukan dengan cara pemisalan seperti saat kita mencari rumus mp dan abc.

From Rumus Kuadrat
Go to text

Pada persamaan ax2+bx+c=0ax^2 + bx + c =0 berlaku:

x1+x2=bax1x2=caxp=b2ax1,2=b±b24ac2a=b±D2a\begin{align*} x_{1}+x_{2} & =\frac{-b}{a}\\ x_{1}x_{2} & =\frac{c}{a}\\ x_{p} & =\frac{-b}{2a}\\ x_{1,2} & =\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}\\ & =\frac{-b\pm\sqrt{D}}{2a} \end{align*}

# Rumus Jumlah Akar

x1+x2=bD2a+(b+D2a)=bDb+D2a=2b2a=ba\begin{aligned} x_{1} +x_{2} & =\frac{-b-\sqrt{D}}{2a} +\left(\frac{-b+\sqrt{D}}{2a}\right)\\ & =\frac{-b-\sqrt{D} -b+\sqrt{D}}{2a}\\ & =\frac{-2b}{2a}\\ & =\frac{-b}{a}\\ \end{aligned}

# Rumus Perkalian Akar

x1×x2=bD2a×b+D2a=b2D4a2=b2(b24ac)4a2=4ac4a2=ca\begin{aligned} x_{1} \times x_{2} & =\frac{-b-\sqrt{D}}{2a} \times \frac{-b+\sqrt{D}}{2a}\\ & =\frac{b^{2} -D}{4a^{2}}\\ & =\frac{b^{2} -\left( b^{2} -4ac\right)}{4a^{2}}\\ & =\frac{4ac}{4a^{2}}\\ & =\frac{c}{a} \end{aligned}

# Rumus Pengurangan Akar

Jika x1<x2x_1 < x_2

x1x2=bD2a(b+D2a)=bD+bD2a=2D2a=Da\begin{aligned} x_{1} -x_{2} & =\frac{-b-\sqrt{D}}{2a} -\left(\frac{-b+\sqrt{D}}{2a}\right)\\ & =\frac{-b-\sqrt{D} +b-\sqrt{D}}{2a}\\ & =\frac{-2\sqrt{D}}{2a}\\ & =\frac{-\sqrt{D}}{a} \end{aligned}

Jika x1>x2x_1 > x_2

x1x2=b+D2a(bD2a)=b+D+b+D2a=2D2a=Da\begin{aligned} x_{1} -x_{2} & =\frac{-b+\sqrt{D}}{2a} -\left(\frac{-b-\sqrt{D}}{2a}\right)\\ & =\frac{-b+\sqrt{D} +b+\sqrt{D}}{2a}\\ & =\frac{2\sqrt{D}}{2a}\\ & =\frac{\sqrt{D}}{a} \end{aligned}

# Rumus Penjumlahan Kuadrat Akar

x12+x22=(bD2a)2+(b+D2a)2=b2+2bD+D4a2+b22bD+D4a2=2b2+2D4a2=b2+D2a2=b2+b24ac2a2=2b24ac2a2=b22aca2=b2a22aca2=b2a22ca=(x1+x2)22(x1×x2)\begin{aligned} x_{1}^{2} +x_{2}^{2} & =\left(\frac{-b-\sqrt{D}}{2a}\right)^{2} +\left(\frac{-b+\sqrt{D}}{2a}\right)^{2}\\ & =\frac{b^{2} +2b\sqrt{D} +D}{4a^{2}} +\frac{b^{2} -2b\sqrt{D} +D}{4a^{2}}\\ & =\frac{2b^{2} +2D}{4a^{2}}\\ & =\frac{b^{2} +D}{2a^{2}}\\ & =\frac{b^{2} +b^{2} -4ac}{2a^{2}}\\ & =\frac{2b^{2} -4ac}{2a^{2}}\\ & =\frac{b^{2} -2ac}{a^{2}}\\ & =\frac{b^{2}}{a^{2}} -\frac{2ac}{a^{2}}\\ & =\frac{b^{2}}{a^{2}} -\frac{2c}{a}\\ & =( x_{1} +x_{2})^{2} -2( x_{1} \times x_{2}) \end{aligned}

# Rumus Penjumlahan Kuadrat Akar

x13+x23=(bD2a)3+(b+D2a)3=(b33b2D3bDDD)8a3+(b3+3b2D3bD+DD8s2)=2b36bD8a3=b33bD4a3=b33b(b24ac)4a3=b33b3+12abc4a3=4b3+12abc4a3=4b34a3+12abc4a3=(ba)3+3bca2=(ba)3+3×ba×ca=(x1+x2)3+3(x1+x2)(x1×x2)\begin{aligned} x_{1}^{3} +x_{2}^{3} & =\left(\frac{-b-\sqrt{D}}{2a}\right)^{3} +\left(\frac{-b+\sqrt{D}}{2a}\right)^{3}\\ & =\frac{\left( -b^{3} -3b^{2}\sqrt{D} -3bD-D\sqrt{D}\right)}{8a^{3}} +\left(\frac{-b^{3} +3b^{2}\sqrt{D} -3bD+D\sqrt{D}}{8s^{2}}\right)\\ & =\frac{-2b^{3} -6bD}{8a^{3}}\\ & =\frac{-b^{3} -3bD}{4a^{3}}\\ & =\frac{-b^{3} -3b\left( b^{2} -4ac\right)}{4a^{3}}\\ & =\frac{-b^{3} -3b^{3} +12abc}{4a^{3}}\\ & =\frac{-4b^{3} +12abc}{4a^{3}}\\ & =\frac{-4b^{3}}{4a^{3}} +\frac{12abc}{4a^{3}}\\ & =\left(\frac{-b}{a}\right)^{3} +\frac{3bc}{a^{2}}\\ & =\left(\frac{-b}{a}\right)^{3} +3\times \frac{b}{a} \times \frac{c}{a}\\ & =( x_{1} +x_{2})^{3} +3( x_{1} +x_{2})( x_{1} \times x_{2}) \end{aligned}

# Kesimpulan

Untuk persmaan ax2+bx+c=0ax^2+bx+c=0 berlaku

x1+x2=bax1x2=cax1x2=Da(x1<x2)x1x2=Da(x1>x2)x12+x22=(x1+x2)22(x1×x2)x13+x22=(x1+x2)3+3(x1+x2)(x1×x2)\begin{align*} x_{1}+x_{2} & =\frac{-b}{a}\\ x_{1}x_{2} & =\frac{c}{a}\\ x_{1}-x_{2} & =\frac{-\sqrt{D}}{a} & (x_{1}<x_{2})\\ x_{1}-x_{2} & =\frac{\sqrt{D}}{a} & (x_{1}>x_{2})\\ x_{1}^{2}+x_{2}^{2} & =(x_{1}+x_{2})^{2}-2(x_{1}\times x_{2})\\ x_{1}^{3}+x_{2}^{2} & =(x_{1}+x_{2})^{3}+3(x_{1}+x_{2})(x_{1}\times x_{2}) \end{align*}